Multiscale modeling approach for calculating grain-boundary energies from first principles

نویسنده

  • O. A. Shenderova
چکیده

A multiscale modeling approach is proposed for calculating energies of tilt-grain boundaries in covalent materials from first principles over an entire misorientation range for given tilt axes. The method uses energies from density-functional calculations for a few key structures as input into a disclination structural-units model. This approach is demonstrated by calculating energies of ^001&-symmetrical tilt-grain boundaries in diamond. @S0163-1829~98!50806-5#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-Principles Approach to Heat and Mass Transfer Effects in Model Catalyst Studies

We assess heat and mass transfer limitations in in situ studies of model catalysts with a first-principles based multiscale modeling approach that integrates a detailed description of the surface reaction chemistry and the macro-scale flow structures. Using the CO oxidation at RuO2(110) as a prototypical example we demonstrate that factors like a suppressed heat conduction at the backside of th...

متن کامل

Multiscale modeling of precipitate microstructure evolution.

We demonstrate how three "state-of-the-art" techniques may be combined to build a bridge between atomistics and microstructure: (1) first-principles calculations, (2) a mixed-space cluster expansion approach, and (3) the diffuse-interface phase-field model. The first two methods are used to construct the driving forces for a phase-field microstructural model of theta'- Al2Cu precipitates in Al:...

متن کامل

MULTISCALE MODELING OF DAMAGE PROCESSES IN fcc ALUMINUM: FROM ATOMS TO GRAINS

Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics...

متن کامل

Paper for the Special Session on Nanostructured Materials at the 45 AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit Stress Distribution During Deformation of Polycrystalline Aluminum by Molecular-Dynamics and Finite-Element Modeling

In this paper, a multiscale modelling strategy is used to study the effect of grain-boundary sliding on stress localization in a polycrystalline microstructure with an uneven distribution of grain size. The development of the molecular dynamics (MD) analysis used to interrogate idealized grain microstructures with various types of grain boundaries and the multiscale modelling strategies for mod...

متن کامل

Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998